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Rigorous Analysis of 3-D Planar Circuit ‘

Using the Space-Spectral

Approach (SSDA)
Ke Wu, Member, IEEE, Ming Yu, Student Member, IEEE, and IWediger VahMieck, Senior Member, IEEE

Absbwct-A new method, the Space-Spectral Domain Ap-
proach (SSDA), has been developed to determine scattering pa-

rameters for arbitrarily shaped multilayered planar
MIC /MMIC discontinuities. Although the basic framework of

the SSDA has been introduced previously, only resonant fre-

quencies of planar circuit discontinuities could be calculated.
The SSDA as presented in this paper is not only significantly
extended, but it also introduces the new concept of self-con-

sistent hybrid boundary conditions to replace the modal source

concept in the feed line. Furthermore, a general error fnnction

is derived to provide a direct assessment of the discretization

accuracy. The convergence behavior of this new method is in-

vestigated, and current’standing-wave profiles along microstrip

throughlines with matched, open and short-circuited condi-
tions are given. Finally, S-parameters for several microstrip
discontinuities with abrupt and smooth transition are illus-
trated to demonstrate the flexibility of this new approach.

INTRODUCTION

A CCURATE characterization of planar discontinuities

is the basis for industrial applications of computer-

aided design of monolithic microwave integrated circuits

(MMIC) and miniature hybrid microwave integrated cir-

cuits (MHMIC). In general, these circuits are composed

of cascaded planar transmission lines which are intercon-

nected by circuit discontinuities. The difficulties in de-

scribing the scattering parameters of these discontinuities

are accentuated by the possibility of an irregularly shaped

contour and the presence of a multilayered substrate to-

pology.

Hitherto known full-wave techniques applicable to ar-

bitrarily shaped 3-D discontinuities are mostly based on

spatial discretization of the structure (i. e., FDTD [ 1]–[2],

TLM [3], [4], FEM [5], [6]). Although these techniques

are very flexible, they provide accurate results only at the
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expense of memory space and CPU time. This is in par-

ticular true when very thin substrate layers are involved

(i.e., insulating layers in semiconductor based transmis-

sion lines). In this case, techniques which also discretize

the space transverse to the propagation direction need a

very fine resolution to accommodate these layers. This

may require the use of supercomputer power to obtain re-

sults in a reasonable time. Other techniques which are

known to be computationally very efficient, like the spec-

tral domain approach (SDA) [7]–[9] and other alternative

methods [10] –[1 2], lose some of their advantages when

applied to spatial 3-D discontinuities. In particular when

these discontinuities are arbitrarily shaped, convergence

of the basis functions (SDA) becomes generally a prob-

lem. .

To avoid ,difficulties associated with 2-D basis, func-

tions or 3-D spatial discretizaticm, the authors recently

[18], [19] have introduced a novel combination of two

different modeling techniques, the method of lines (MOL)

[13] -[16] and the SDA, to form the space spectral domain

approach (SSDA). In this technique, the disadvantages

associated with each of the methods when applied indi-

vidually to 3-D discontinuities can be largely eliminated.

This is so, because the MOL is most etlicient when only

one spatial variable needs to be discretized and similarly,

the SDA i$ most efficient when ‘only 1-D basis functions

are used. Therefore, the SSDA combines the 1-D SDA

(which is used to describe only the plane transverse to the
propagation direction) with the 1-D MOL (which de-

scribes the circuit in propagation direction). This combi-

nation takes advantage of the flexibility of the MOL to

model arbitra~ discontinuities and at the same time adds

the computational efficiency of the SDA. In addition, the

SSDA accounts automatically for the singularity of fields

(or currents) along the edges of slots (or strips).

So far the SSDA has only been capable of analyzing

resonant structures. In this paper the SSDA is extended to

calculate the s-parameters of discontinuities. This ex-

tended version of the SSDA employs the concept of self-

consistent inhomogeneous (or hybrid) boundary condi-

tions at the end of feedlines which are connected to either

side of the discontinuity. ‘

This approach makes it possible to simulate the whole

structure via an eigenvalue equation in which the solution’
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is the reflection coefficient of the discontinuity. The hy-

brid boundary conditions have been used before in [21]

and [22] but in the first case to model the forward and

reflected waves individually and in the second case to find

the total field at the launching point by using a modal

source approach. In the method presented here, the re-

flection coefficient (or s,,) is obtained directly.

Another contribution resulting from this work is that

error functions are derived based on a comparison be-

tween the differential and difference operators in the in-

homogeneous boundary conditions. These functions are

useful in determining the discretization accuracy and the

error introduced. At the same time, a limiting criterion is

derived which indicates when and how the discretization

size should be changed.

THEORY

In the following the equidistant discretization scheme

is used for simplicity. The scattering parameter analysis

of a 3-D planar discontinuity problem with arbitra~ con-

tour and multilayered substrates is shown in Fig. 1. The

electromagnetic field in each dielectric region is described

by two scalar potential functions, ~‘ and ~‘, which sat-

isfy the Helmholtz equation and the bounda~ conditions.

Both potential functions are z-oriented and hence corre-

spond to the TM and TE modes in the guided structure.

Since the principal analytical steps involved in the space-

spectral domain approach have been well explained in

[19], the emphasis in the following analysis is on how to

simulate the 3-D scattering problems by the self-consis-

tent inhomogeneous boundary conditions implemented in

the SSDA algorithm.

Instead of discretizing the 3-D planar structure in the x

and z directions as required by the conventional 2-D

MOL, the structure is discretized in the z-direction only.

This step corresponds to slicing the structure in the x-y

planes for each of the two scalar potential functions sep-

arately. The distance between two slices is determined by

the discretization size h. Using the Fourier transform, the

two scalar potential functions are written in the spectral

domain along the x-direction. This step means that a set

of continuous expansion functions are assigned to each

discrete line. Considering a structure with open bilateral

boundaries leads to infinite integrals, these can be ap-

proximated by the integration over a finite space (O, a)

[23]:

~e’’(cx, y, z) = !
+m

+e’h(x,y,z)e’w ah
—m

(.
a’

$ “h(x,y,z)e jw dx. (1)
.JU

A. Inhomogeneous (Hybrid) Boundary Conditions

It is assumed that at some distance from Port 1 of the

discontinuity there will be a standing wave of the funda-

mental mode only consisting of incident and reflected
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Fig. 1. Illustration of an arbitrary 3-D planar multilayered circuits with
matched, opeu and short circmted Port 2.

where G~ is the propagation constant at the boundary of

Port 1 calculated separately by using the SDA, r is the

voltage reflection coefficient and ~ ~,’ ~ ~ are the incident

TE/TM potentials at z = O. The inhomogeneous bound-

ary conditions can be derived independently without con-

sidering the spectral domain factors. With reference to the

matched, open- and short-circuited conditions, as illus-

trated in Fig. 1, three different cases for the boundaries

exist, these are the Dirichlet, Neumann and hybrid bound-

ary conditions. For the matched condition at Port 2 there

are two choices for the discretization scheme depending

on whether to assign an e or h line as the first line. In the

following, the discretization scheme begins with an h-line

(open-circuit).

In case of the matched and open-circuit conditions,

the hybrid boundary condition at z = O for IJ’ can be ex-
pressed as

4J’IZ=0 = +? (Dirichlet kind)

ar@ at z = 0.5 h for ~h:

~lfi = at! = _jP1 1 – ~~rg(0.581h)

az z= O.sh az ~ – jtg(0.5(31h)

(Neumann kind)

(3)

#’l’

(4)

in which ~ = (1 + r) /( 1 – r). The voltage reflection

coefficient is thus explicitly involved in the hybrid bound-

ary conditions. At Port 2 the matched and open-circuit
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conditions correspond to:

abe 1 a~ f

(matched condition) (5)

and

a$E a*; A*;

a2 ,=~-~ = az. “x=
-;$;

(open-circuited condition) (6)

respectively, where ~2 is the propagation constant at’ Port

2 if a two-port circuit is considered. The propagation con-

stants 61 and 82 can be derived from the 1-D SDA or

MOL. Note that the matched condition corresponds to the

discretization scheme of the open-circuit condition. In

a similar way, the hybrid boundary conditions obtained

for the short~circuit situation is as follows:

at’ – a+; _ _j@l

T – jtg(O.5~ ~h)
—

az z=O.5h
az 1 – jTtg(o.5~@)

(at Port 1)

a~h a+ $ A+;

az ,=L_h= az. “Ii= -;+;

(at Port-2) (7)

Obviously, the potential functions and their first deriva-

tives constitute. the characteristic solutions of the whole

circuit. It is interesting to see that the complex functions

of the inhomogeneous boundary conditions at the input

described in (4) and (7) are not only expressed in terms

of the propagation constant 01, but also the discretization

interval h and the unknown voltage reflection coefficient

r (or .rl 1). In other words, the inhomogeneous boundary

conditions are no longer “static” and strongly depend on

the unknown scattering parameter, which in turn depends

on the geometry of the structure of interest as well as the

operating frequency. This is why the” inhomogeneous

boundary conditions are said to be self-consistent.

B. Error Functions and Limiting Conditions of

Discretization

Judging from the inhomogeneous boundary conditions,

the discretization size h is involved and plays an impor-

tant role in the analysis. Intuitively speaking, the smaller

the interval h is, the more accurate the numerical results

become. However, it is not advisable to chose a very fine

discretization scheme since this leads not only to a time-

consurning algorithm but also deteriorates its efficiency

and stability. So far, there is no detailed analysis treating

this problem. In the following, analytical error functions

are introduced to provide some criteria on the limiting

conditions of the discretization. These criteria are useful

for gaining insight into the error magnitude introduced in

the analysis due to the discretization.

To begin with, the finite difference operator is applied

to approximate the differential operator in dealing with

the inhomogeneous boundary conditions at both port 1

and Port 2. In view of the matched or open-circuit con-

dition, as shown in Fig. 1, a simple analytical expression .

is obtained from (2):

A+h = +!- $;

Az z=O.5h h

sin (0.561h)
. –.ifll

0.5B1h

In comparison with (4), the error function at Port 1 can

be defined by the difference operator over its differential

counterpart:

$1=1–

A*h

Az ,

a+ h

a2 ,

(9)

with

Az II_ = tg(0.5(31h) 1

0.5(?1h 1 – ~7tg(0.5E1h) “
(lo)

a+h

az ~

Similarly, the error function is obtained for the short-cir-

cuit condition, which essentially is the same expression

as (10) after replacing ~ by 1 /~:

Az II_, = tg(0.5131h) r

0.5e1h r – jtg(0.501h)”
(12)

a$e I

a2 1,

The’ error function at Port 2 can also be derived based on

the same definition as in (9) and (11) if the matched con-

dition is considered:

g2=l–.–

A+e

Az ~

a+’

a7.~

(13)
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with

A+e

Az Ik ‘in (O.5&h) ~–jo,5~2h

aqe = 0.5&h
(14)

a2 ~

Apparently, the error functions described in (9)-(14) have

the same characteristic behavior as the function sin (x)/x.

The minimum point of the error function requires that x( =

~h) be equal to zero which is impossible in practical ap-

plications. Therefore, an error term is inevitably intro-

duced into the analysis. As indicated in (10), (12), and

(14), the error function may consist of magnitude and
phase, but only the magnitude part is considered here for

brevity. Note that although the error function is seemingly

defined only at the input, it is virtually valid throughout

the line as long as the discretization and fundamental mode

are concerned. This is because the differential operations

of Maxwell’s and Helmholtz’ equations are approximated

by the corresponding finite difference operation at any lo-

cation of the line. In general, minimizing the error func-

tion is to restrict the product x(= Bh) within a certain

margin close to zero such that the function sin (x)/x ap-

proaches unity. To do so, the following special criteria (3

dB criterion) can be defined:

sin (0.56h) > 0-707

o.5f?h – “
(15)

This is the limiting condition of the discretization, in

which (3 should be max (Dl, (32). Solving (15) leads to the

following expression:

(16)

where h~ is the smallest guiding wavelength along the line,

Equations (15) and (16) mean that the interval size h

should be smaller than one fifth of the guiding wave-

length. Although there is no lower limit of the discreti-

zation steps, an adequate choice should be made to guar-

antee both accuracy and efficiency of the algorithm. In

view of the required accuracy in practical applications, it

is necessary to choose at least one tenth of the guiding

wavelength. On the other hand, the error functions de-

fined at Port 1 are dependent on the unknown voltage re-

flection coefficient, and subsequently on the structure it-

self. It is believed that such a criterion is not limited to

the present method and is also applicable to other ap-

proaches employing discretization like TLM, finite-dif-

ference technique and even FEM.

C. lke Space-Spectral Domain Approach and the

Determinant Equation

This section describes the determinant equation derived

from the SSDA procedure. The solution of this determi-

nant equation is the unknown reflection coefficient r. The

matched condition is taken as an example in the following

analysis. The inhomogeneous bounda~ conditions are

(17)

in which u and v are the coefficients defined in (4) and

(5). In order to maintain the essential transformation

properties (known from the MOL procedure), symmetric

second-order finite-difference operators are required to

deal with the Helmholtz equation and, in particular, the

field equations tangential to the interfaces. Using the con-

cept and algorithm described in [21], the electric and

magnetic potential vectors in the original discrete domain

are normalized by quasi-complex diagonal matrices [15]–

[“
1

~h _ “.—

1

11
1

(18)

(19a)

(19b)

L @?J
Therefore, the first derivatives of the potential functions

are approximated by

where superscript t denotes the transposed matrix and D

is the bidiagonal matrix which has been formulated in

[ 13]-[16]. The second derivatives of the potential vectors

are transformed to:

Note that the unknown voltage reflection coefficient is di-

rectly involved with the first element of ~‘ and its related

matrices.

Helmholtz’ equations for ~ e and ~ h can now be trans-

formed to uncouple the differential equations in the
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space-spe~tral domain via the complex transformation

matrices T”~, which can be obtained numerically from an

eigenvalue analysis [21]:

with

where u is the Fourier transform factor along the x-direc-

tion. As mentioned in [21], somet~mes the columns of the

complex transformation matrices ~”~ have LO be suitably—.
rearranged such that the elementary matrix ~ = ~” ~Z~’

retains quasi-diagonal properties [13] –[ 16]. This is usu-

ally done by sorting the absolute eigenvalties. It is worth-

while noting that the matrices ~ “h are unique once the

longitudinal boundary conditions are given and they are

totally independent of the metallic contour of the discon-

tinuity. The conductor circuit is only involved in form of

the basis functions which will be explained later. The so-

lution to (22) simply describes the wave propagation in

the y-direction and can be written as a set of inhomoge-

neous transmission line equations which gives a relation-

ship for ~ “h and its derivatives in the bottom and top

boundaries of one dielectric layer [19].

Applying the continuity condition at each dielectric in-

terface leads to a matrix relationship between the tangen-

tial field components of two adjacent subregions in the

interface plane. Next, by successively utilizing the con-

tinuity condition and multiplying the resulting matrices by

the transmission line matrices associated with the multi-

layer subregions, the boundary conditions from the top

and bottom walls can be transformed into the interface

plane of the discontinuity. This leads to a kind of space-

spectral Green’s function in the transformed domain which

must be transformed back into the original domain [19].

This step can be performed by the conventional MOL and

SDA procedures independently. From the mathematical

viewpoint there is no difference which procedure is ap-

plied first. However, applying the MOL first leads to a

better physical understanding and easier mathematical

treatment. Since the planar conductors continuously ex-

tend over the entire surface of the circuit, the discretiza-

tion lines intersecting the conductor section are equal to

the total number (2 X k) of the potential lines. As a result,

the matrix elements of the resulting Green’s function in

the space-spectral domain are once again coupled to each

other through the reverse transformation back into the

original domain:

This equation is now subject to the SDA technique from

which the eigensolution can be obtained directly in the

spectral domain. To do so, the Galerkin’s technique is

used together with an appropriate choice of basis func-

tions defined on the conductor surface for each slicing line

in the z direction. This leads to a characteristic matrix

equation system which must be solved for the zeros of its

determinant, Whereby the determinant is a function of the

reflection coefficient r:

[1~(r) ; = o. (24)

In contrast to the 3-D SDA, only one-dimensional basis

functions are needed here. In order to achieve a fast al-

gorithm, the following trigonometric functions combined

with the edge condition are used:

i~@=J-+-&-j

p=l,2,3, ”””withmh=l,2, ” “*,II

q =0,1,2,””” with m’=1,2, ””. ,k

(25)

where aflk and b$ denote the unknown modal current coef-

ficients, which must be determined for each line, Note

that e and h refer to electric and magnetic potential lines,

respectively. Subscripts p and q denote the number of the

basis functions. For irregularly shaped discontinuities, the

geometric parameters w ands become a function of the z-

coordinate and therefore are different for each line. In-

general, this does not complicate the analysis of planar

structures at all, as long as the circuit contour can be de-

scribed mathematically or by a set of coordinates. It

should be emphasized that, due to the flexibility in han-

dling arbitra~ circuit topology, the SSDA is very well

suited for contour-driven CAD software. In addition, sin-

gularities of the circuit in the x direction are automatically

considered in the formulation of the basis functions.

Once the voltage reflection coefficient r (sl ~) is known,

an arbitrary constant for the first element of the x-oriented

current coefficients can be assumed. Applying a singular

value decomposition technique to (24) yields all the cur-

rent coefficients for the chosen basis functions assigned to

each discrete line. Therefore, the total surface current

across the line can be obtained by a simple integration. It

is worthwhile pointing out that infinite summation of the
spect~al terms, when constructing the characteristic equa-

tion ~ in (24) must be truncated at a suitable value N for



1480 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES> VOL. 40, NO. 7, JULY 1992

practical calculations. N can be different for each line.

However, for simplicity, only equal numbers for each line

will be considered in the following calculations.

RESULTS AND ‘DISCUSSION

First of all, the influence of the voltage reflection coef-

ficient r(sl,) on the error function is examined by assum-

ing that the 3 dB criterion defined in (15) and (16) is sat-

isfied for two cases: h/h~ = 0.2 and h/& = 0.05. It is

important to note that such a function is related only to

the discretization error and cannot be regarded as the

overall accuracy criterion although both errors are related

to each other to some extent. Fig. 2 and .Fig. 3 display

the magnitude of the error function versus the phase ofs, 1

in degrees at Port 1 which varies from 00 to 3600 with

different voltage reflection coefficients. It is obvious that

choosing a fine discretization significantly reduces the er-

ror term. On the other hand, maximum and minimum er-

ror may occur at different locations of the phase. In case

of h/ Ag = 0.05, for example, maximum error points are

quasi-symmetrically located at two sides of one minimum

location around z Sll = 1750 while in case of h /h~ =

0.2 two minimum locations exist which are close to z .sl,

= 160° and Zsll = 320°, respectively. Another obser-

vation is that the error for small reflections appears to be

smaller than that of larger reflections, which can be ex-

plained by the fact that a higher reflection yields a distinct

variation of the standing-wave pattern and consequently

causes higher discretization error of the differential oper-

ators. This is in particular true if the reference plane of

discretization coincides with the position on the line where

a strong variation of the waveform occurs. In other words,

choosing different lengths of the feed line and/or terminal

line results in different phase terms of the voltage reflec-

tion coefficient at the reference plane with no change in

the magnitude of r.

To demonstrate the SSDA, three simple examples of

through-lines with matched, open- and short-circuit con-

ditions at the bounda~ of Port 2 are given. Since only

propagation of the fundamental mode is considered along

the uniform transmission lines, one basis function of each

~X and JZ component is needed to provide enough accu-

racy. Fig. 4 shows a convergence test of AS11 for a short-

circuited through microstrip line as a function of the trurt-

cated spectral term along the x-direction with different
discretization size. It can be seen that the convergence is

quite beyond N = 75 for three discretization sizes.

Fig. 5 displays the surface current distribution of .lX and

~, components along the longitudinal direction of the line

under matched condition. There is a negligible standing-
wave (I r I = 0.022) on the line which should not be the

case if the matching were perfect. This phenomenon can

be explained by the fact that the matched condition im-

plemented in this theory is a necessary condition which

does not provide a complete match due to the error of

discretization and the truncated terms of the infinite spec-

trum. This has also been reported in [24]. Increasing the
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Fig. 2. Maguitude of the error function at Port 1 as a function of the angle

of r with different magnitudes of r in case of fine discretization.
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Fig. 3. Magnitude of the error function at Port 1 as a function of the angle

of r with different magnitudes of r in case of rough discretization.

0.5

1, 1*2
i

.................................................................."'""""""''""""""""""..------------. ........ .......,,........-------------------------------
,,..----

~ ..,,,,--,

/ ,flii~\#,\\~~;;..,.,”

m
-2.0 \ ; I I I 1

0 50 100 150 200
N (overall spectraJ term)

Fig, 4. Relative convergence behavior of the voltage reflection COeffiCkIrt

L r versus the truncated spectral term N with different, discretization size
for a shorted through microstrip line. I r / = 1 is always obtained. The
parameters used in the calculation: 1 = 9 mm, w = 1 mm, h = 0.25 mm,
a = 10 mm, s = 4.5 mm, ~= 12 GHz, e, = 10, c.* = 8.0474 and substrate
thickness is 0.25 mm.

spectral term N can improve the mismatch (i. e., I S11I

= 0.059 for N = 100 to 0.022 for N = 150). In addition,

the magnitude of JX tends to vanish because of its anti-

symmetry of the current distribution on the conductor.
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Fig. 6. Standing-wave profiles of the J, component along the through mi-
crostrip line as described in Fig. 4 with the short and open-circuit ter-
mination.

Fig. 6 illustrates the complete standing-wave of the .lZ

component along the line with the open and short at Port

2 (1 r I at z = O is 1.0 for both open and short circuits),

which agrees well with the physical perception. As ex-

pected, the maximum and minimum points for the open

and short are alternatively located, and the open and short

points of the line are clearly indicated by the magnitude

of the standing-waves.

Fig. 7 shows a comparison of the parameter ,sl, ob-

tained by this method and by others (i.e. [21], [25]) for a

microstrip step discontinuity. A good agreeent can be ob-

served over the frequency range up to 25 GHz, while a

small discrepancy of numerical results appears beyond that
frequency range. This may be due to diffcxent dimensions

of the shielding box.

Transmission characteristics of two closely spaced mi-

crostrip step discontinuities are shown in Fig. 8. It is ev-

ident that there is a strong interaction between both steps

since the separation of both steps is less than half the

l.o -
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Fig. 7. Frequency-dependent reflection characteristics (f,,) of a microstrip
step discontinuity. w, = 1.00 mm, Wz = 0.25 mm, ~, = 10.0, a = 10mm
and thickness of the dielectric substrate t = 0.25 mm.
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Fig. 8. S-parameters for a cascaded step discontinuity separated by a
transmission line of length 1. w, = 0.4 mm, WO= 0:2 mm, W*= 0.8 mm,
C,= 3.8, ~ = 5 mm and t = o.25 mm. (a) Magnitude of s,,. (b) Phase of

S1l.

guided wavelength. Interestingly, a tighter coupling of

both steps leads to a lower reflection coefficient over the

frequency. The phase of the step discontinuity is shown

in Fig. 8(b). These results suggest that a strong inter-
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Fig. 9. Frequency response of a linear taper with a variable angle 0. Di-
mension of the structure is the same as that used in Fig. 7.

action between two single step discontinuities is not lim-

ited to only cases of short interconnecting stubs.

The frequency-dependent reflection characteristic of a

linear microstrip taper is presented in Fig. 9 to demon-

strate the flexibility and efficiency of this full-wave ap-

proach when arbitrary discontinuity contours are consid-

ered. The limiting case of the taper is 19 = 90 degree in

which the taper is reduced to an abrupt step discontinuity

analyzed in Fig. 7. An oscillating behavior ofS11 appears

in cases of long tapers (0 = 30 degree and 6 = 15 degree)

which indicates some kind of resonance effect. For the 0

= 15 degree taper this resonance effect occurs at higher

frequencies than for the one with 13= 30 degree. Similar

characteristics of linear microstrip tapers have been ob-

tained by the planar circuit approach in [26].

CONCLUSION

A new approach using the Space-Spectral Domain Ap-

proach (SSDA) has been presented to calculate scattering

parameters and field/current distributions for three-di-

mensional discontinuity problems in MIC /MMIC cir-

cuits. The theory presented in this paper demonstrates how

to implement self-consistent hybrid boundary conditions.

Analytical error functions are introduced for the first time
to estimate the error magnitude due to the discretization

scheme used in this method. The convergence behavior

of the method is illustrated as a function of the truncated

spectral terms and with different discretization sizes. Sur-

face current standing-wave profiles along microstrip

through-lines with matched, open- and short-circuit con-

ditions are calculated. A comparison with results from

other methods validates this new approach. Some practi-

cal discontinuities including the linear microstrip taper

have been analyzed, to demonstrate the efficiency and

flexibility of this technique in treating arbitrary planar cir-

cuit contours frequently found in M(H) MIC’s.
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