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ngorous Analysis of 3-D Planar Circuit
Discontinuities Using the Space Spectral
Domain Approach (SSDA)

Ke ‘Wu, Member, IEEE, Ming Yu, Student Member, IEEE, and Ruediger Vahldieck, Senior Member, IEEE

Abstract—A new method, the Space-Spectral Domain Ap-
proach (SSDA), has been developed to determine scattering pa-
rameters for arbitrarily’ shaped multilayered planar
MIC /MMIC discontinuities. Although the basic framework of
the SSDA has been introduced previously, only resonant fre-
quencies of planar circuit discontinuities could be calculated.
The SSDA as presented in this paper is not only significantly
extended, but it also introduces the new concept of self-con-
sistent hybrid boundary conditions to replace the modal source

_concept in the feed line. Furthermore, a general error function
is derived to provide a direct assessment of the discretization
accuracy. The convergence behavior of this new method is in-
vestigated, and current standing-wave profiles along microstrip
throughlines with matched, open and short-circuited condi-
tions are given. Finally, S-parameters for several microstrip
discontinuities with abrupt and smooth . transition are illus-
trated to demonstrate the flexibility of this new approach.

-INTRODUCTION

CCURATE characterization of planar discontinuities
is the basis for industrial applications of computer-
aided design of mopolithic microwave integrated circuits

(MMIC) and miniature hybrid microwave integrated cir-

cuits (MHMIC). In general, these circuits are composed
of cascaded planar transmission lines which are intercon-
nected by circuit discontinuities. The difficulties in de-
scribing the scattering parameters of these discontinuities
are accentuated by the possibility of an irregularly shaped
contour and the presence of a multilayered substrate to-
pology.

Hitherto known full-wave techniques applicable to ar-
bitrarily shaped 3-D discontinuities are mostly based on
spatial discretization of the structure (1 e., FDTD [1]-]2],
TLM [3], [4], FEM [5], [6)). Although these techniques
are very flexible, they provide accurate results only at the
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expense of memory space and CPU time. This is in par-.
ticular true when very thin substrate layers are involved
(i.e., insulating layers in semiconductor based transmis-
sion lines). In this case, techniques which also discretize

. the space transverse to the propagation direction need a

very fine resolution to accommodate these layers. This
may require the use of supercomputer power to obtain re-
sults in a reasonable time. Other techniques which are
known to be computationally very efficient, like the spec-
tral domain approach (SDA) [7]-[9] and other alternative
methods [10]-[12], lose some of their advantages when
applied to spatial 3-D discontinuities. In particular when
these discontinuities are arbitrarily shaped, convergence
of the basis functions (SDA) becomes generally a prob-
lem. :

To avoid difficulties associated with 2-D basis. func-
tions or 3-D spatial discretization, the authors recently
[18], [19] have introduced a novel combination of two
different modeling techniques, the method of lines (MOL)
[13]-[16] and the SDA, to form the space spectral domain
approach (SSDA). In this technique, the disadvantages
associated with each of the methods when applied indi-
vidually to 3-D discontinuities can be largely eliminated.
This is so, because the MOL is most efficient when only
one spatial variable needs to be discretized and similarly,
the SDA is most efficient when only 1-D basis functions

_are used. Therefore, the SSDA combines the 1-D SDA

(which is used to describe only the plane transverse to the
propagation direction) with the 1-D MOL (which de-
scribes the circuit in propagation direction). This combi-

" 'nation takes advantage of the flexibility of the MOL to

model arbitrary discontinuities and at the same time adds
the computational efficiency of the SDA. In addition, the
SSDA accounts automatically for the singularity of fields
(or currents) along the edges of slots (or strips).

So far the SSDA has only been capable of analyzing
resonant structures. In this paper the SSDA is extended to
calculate the s-parameters of discontinuities. This ex-
tended version of the SSDA employs the concept of self-

- consistent inhomogeneous (or hybrid) boundary condi-

tions at the end of feedlines which are connected to cither
side of the discontinuity. ‘

This approach makes it possible to simulate the whole
structure via an eigenvalue equation in which the solution
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is the reflection coefficient of the discontinuity. The hy-
brid boundary conditions have been used before in [21]
and [22] but in the first case to model the forward and
reflected waves individually and in the second case to find
the total field at the launching point by using a modal
source approach. In the method presented here, the re-
flection coefficient (or s;;) is obtained directly.

Another contribution resulting from this work is that
error functions are derived based on a comparison be-
tween the differential and difference operators in the in-
homogeneous boundary conditions. These functions are
useful in determining the discretization accuracy and the
error introduced. At the same time, a limiting criterion is
derived which indicates when and how the discretization
size should be changed.

THEORY

In the following the equidistant discretization scheme
is used for simplicity. The scattering parameter analysis
of a 3-D planar discontinuity problem with arbitrary con-
tour and multilayered substrates is shown in Fig. 1. The
electromagnetic field in each dielectric region is described
by two scalar potential functions, ¢ and ¢", which sat-
isfy the Helmholtz equation and the boundary conditions.
Both potential functions are z-oriented and hence corre-
spond to the TM and TE modes in the guided structure.
Since the principal analytical steps involved in the space-
spectral domain approach have been well explained in
[19], the emphasis in the following analysis is on how to
simulate the 3-D scattering problems by the self-consis-
tent inhomogeneous boundary conditions implemented in
the SSDA algorithm.

Instead of discretizing the 3-D planar structure in the x
and z directions as required by the conventional 2-D
MOL, the structure is discretized in the z-direction only.
This step corresponds to slicing the structure in the x-y
planes for each of the two scalar potential functions sep-
arately. The distance between two slices is determined by
the discretization size 4. Using the Fourier transform, the
two scalar potential functions are written in the spectral
domain along the x-direction. This step means that a set
of continuous expansion functions are assigned to each
discrete line. Considering a structure with open bilateral
boundaries leads to infinite integrals, these can be ap-
proximated by the integration over a finite space (0, a)
[23]:

+ oo
S ¥l (x,y,2)e 1™ dx

vla, y, 2) =

.
~ SO eh(x,y,2)e '™ dx. D

A. Inhomogeneous (Hybrid) Boundary Conditions

It is assumed that at some distance from Port 1 of the
discontinuity there will be a standing wave of the funda-
mental mode only consisting of incident and reflected
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Fig. 1. Iilustration of an arbitrary 3-D planar multilayered circuits with
matched, open and short circuited Port 2.
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where 3, is the propagation constant at the boundary of
Port 1 calculated separately by using the SDA, r is the
voltage reflection coefficient and ¢, Y2 are the incident
TE /TM potentials at z = 0. The inhomogeneous bound-
ary conditions can be derived independently without con-
sidering the spectral domain factors. With reference to the
matched, open- and short-circuited conditions, as illus-
trated in Fig. 1, three different cases for the boundaries
exist, these are the Dirichlet, Neumann and hybrid bound-
ary conditions. For the matched condition at Port 2 there
are two choices for the discretization scheme depending
on whether to assign an e or & line as the first line. In the
following, the discretization scheme begins with an h-line
(open-circuit).

In case of the matched and open-circuit conditions,
the hybrid boundary condition at z = 0 for ¥ ¢ can be ex-
pressed as

¥¢,-0 = ¥¢  (Dirichlet kind) 3)
and at z = 0.5 h for "
" 3t o 1 — jr1g(0.58,h)
. =——=—Jjb

T — jtg(0.58:h) '
(Neumann kind) 4)

9z |,—osn 0z

in which 7 = (1 + r)/(1 — r). The voltage reflection
coefficient is thus explicitly involved in the hybrid bound-
ary conditions. At Port 2 the matched and open-circuit
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conditions correspond to:

3;?-2=L_h =2 sy
(matched condition) o)
and
A _ Wi Avi _1“
0 |-, 02 Az h

(open-circuited condition)  (6)

respectively, where 8, is the propagation constant at'Port
2 if a two-port circuit is considered. The propagation con-
stants 8, and 3, can be derived from the 1-D SDA or
MOL. Note that the matched condition corresponds to the
discretization scheme of the open-circuit condition. In
a similar way, the hybrid boundary conditions obtained
for the short-circuit situation is as follows:

W* _ 0y 7 — jig(0.58:h) ,
9 logsn 92 o — jr1g(0.56,h) * '
(at Port 1)
Wk Ak 1,
oz ., 9z Az hk
(at Port-2) ' @)

Obviously, the potential functions and their first deriva-
tives constitute. the characteristic solutions of the whole
circuit. It is interesting to see that the complex functions
of the inhomogeneous boundary conditions at the input
described in (4) and (7) are not only expressed in terms
of the propagation constant 3,, but also the discretization
interval h and the unknown voltage reflection coefficient
r (or s;;). In other words, the inhomogeneous boundary
conditions are no longer “‘static’’ and strongly depend on
the unknown scattering parameter, which in turn depends
on the geometry of the structure of interest as well as the
operating frequency. This is why the  inhomogeneous
boundary conditions are said to be self-consistent.

B. Error Functions and Limiting Conditions of
Discretization

Judging from the inhomogeneous boundary conditions,
the discretization size 4 is involved and plays an impor-
tant role in the analysis. Intuitively speaking, the smaller
the interval h is, the more accurate the numerical results
become. However, it is not advisable to chose a very fine
discretization scheme since this leads not only to a time-
conguming algorithm but algo deteriorates its efficiency
and stability. So far, there is no detailed analysis treating
this problem. In the following, analytical error functions
are introduced to provide some criteria on the limiting
conditions of the discretization. These criteria are useful
for gaining insight into the error magnitude introduced in
the analysis due to the discretization.
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To begin with, the finite difference operator is applied
to approximate the différential operator in dealing with
the inhomogeneous boundary conditions at both Port 1
and Port 2. In view of the matched or open-circuit con-
dition, as shown in Fig. 1, a simple analytical expression .
is obtained from (2):

N A
AZ l=osn h
., sin (0.58,h)
P10 58,h
aQ-n ;
" OBk + re f05Bihy b (8)

In comparison with (4), the error function at Port 1 can
be defined by the difference operator over its differential
counterpart:

ay'
Az |
& =1- 3_1L_h ©)
az |,
with

Azl 1g(0.58,h) 1 (10)

W\ 058k 1 — jr1g(0.58:h)

az |

Similarly, the error function is obtained for the short-cir-
cuit condition, which essentially is the same expression
as (10) after replacing 7 by 1/7:

Ay”
Az |
=1~ an
R
az |
with
AY°
Az 1 19(0.58,h) T az
%—e- 0561]’! T — ]tg(OSBlh).
9z |

The error function at Port 2 can also be derived based on
the same definition as in (9) and (11) if the matched con-
dition is considered:

Ay’
Az

e
0z

k

(13)

k
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with
Ayc©
Az |, _ sin (0.58,h) o —10-562% (14)
e 0.56,h '
9z k

Apparently, the error functions described in (9)-(14) have
the same characteristic behavior as the function sin (x) /x.
The minimum point of the error function requires that x(=
f3h) be equal to zero which is impossible in practical ap-
plications. Therefore, an error term is inevitably intro-
duced into the analysis. As indicated in (10), (12), and
(14), the error function may consist of magnitude and

phase, but only the magnitude part is considered here for -

brevity. Note that although the error function is seemingly
defined only at the input, it is virtually valid throughout
the line as long as the discretization and fundamental mode
are concerned. This is because the differential operations
of Maxwell’s and Helmholtz’ equations are approximated
by the corresponding finite difference operation at any lo-
cation of the line. In general, minimizing the error func-
tion is to restrict the product x(= Bh) within a certain
margin close to zero such that the function sin (x) /x ap-
proaches unity. To do so, the following special criteria (3
dB criterion) can be defined:

sin (0.58h)

0.56h = 0.707.

15)
This is the limiting condition of the discretization, in
which (8 should be max (8,, (3,). Solving (15) leads to the
following expression:

h = 0.22

A
where A, is the smallest guiding wavelength along the line,
Equations (15) and (16) mean that the interval size A
should be smaller than one fifth of the guiding wave-
length. Although there is no lower limit of the discreti-
zation steps, an adequate choice should be made to guar-
antee both accuracy and efficiency of the algorithm. In
view of the required accuracy in practical applications, it
is necessary to choose at least one tenth of the guiding
wavelength. On the other hand, the error functions de-
fined at Port 1 are dependent on the unknown voltage re-
flection coefficient, and subsequently on the structure it-
self. It is believed that such a criterion is not limited to
the present method and is also applicable to other ap-
proaches employing discretization like TLM, finite-dif-
ference technique and even FEM.

(16)

C. The Space-Spectral Domain Approach and the
Determinant Equation

This section describes the determinant equation derived
from the SSDA procedure. The solution of this determi-
nant equation is the unknown reflection coefficient r. The
matched condition is taken as an example in the following
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analysis. The inhomogeneous boundary conditions are

oy N
- — u¢
0z |,_qsn :
a e
(;/; = -y a7
z=L-h

in which u and v are the coefficients defined in (4) and
(5). In order to maintain the essential transformation
properties (known from the MOL procedure), symmetric
second-order finite-difference operators are required to
deal with the Helmholtz equation and, in particular, the
field equations tangential to the interfaces. Using the con-
cept and algorithm described in [21], the electric and
magnetic potential vectors in the original discrete domain
are normalized by quasi-complex diagonal matrices [15]-
[17]:

1//6 — ‘F‘ea;e
yh=Freh (18)
with

- _

_ 1

7 = (19a)
| 1_
- _

7= : | (19b)
| NI

Therefore, the first derivatives of the potential functions
are approximated by

- <h@> - 7575
e~ < a'ﬁb >
4 0z

where superscript ¢ denotes the transposed matrix and D
is the bidiagonal matrix which has been formulated in
[13]-[16]. The second derivatives of the potential vectors
are transformed to:

(20)

~DMgh. (1)

Note that the unknown voltage reflection coefficient is di-
rectly involved with the first element of 7¢ and its related
matrices.

Helmholtz’ equations for ¢ and y” can now be trans-
formed to uncouple the differential equations in the
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space-spectral domain via the complex transformation
matrices T ", which can be obtained numerically from an
eigenvalue analysis [21]:

d2_ e —7_-v e~ lﬁee? e _
dwh 7h—1§hh?h .
i <a2~+ —h—;‘— - e,k%,)V” =0 (22

with
ge,h — ?e.hl—/: eh

where « is the Fourier transform factor along the x-direc-
tion. As mentioned in [21], sometimes the columns of the
complex transformation matrices T “* have to be suitably
rearranged such that the elementary matrix § = T" D,T*
retains quasi-diagonal properties [13]-[16]. This is usu-
ally done by sorting the absolute eigenvalues. It is worth-
while noting that the matrices T°" are unique once the
longitudinal boundary conditions are given and they are
totally independent of the metallic contour of the discon-
tinuity. The conductor circuit is only involved in form of
the basis functions which will be explained later. The so-
lution to (22) simply describes the wave propagation in
the y-direction and can be written as a set of inhomoge-
neous transmission line equations which gives a relation-
ship for V%" and its derivatives in the bottom and top
boundaries of one dielectric layer [19].

Applying the continuity condition at each dielectric in-
terface leads to a matrix relationship between the tangen-
tial field components of two adjacent subregions in the
interface plane. Next, by successively utilizing the con-
tinuity condition and multiplying the resuiting matrices by
the transmission line matrices associated with the multi-
layer subregions, the boundary conditions from the top
and bottom walls can be transformed into the interface
plane of the discontinuity. This leads to a kind of space-
spectral Green’s function in the transformed domain which
must be transformed back into the original domain [19].
This step can be performed by the conventional MOL. and
SDA procedures independently. From the mathematical
viewpoint there is no difference which procedure is ap-
plied first. However, applying the MOL first leads to a
better physical understanding and easier mathematical
treatment. Since the planar conductors continuously ex-
tend over the entire surface of the circuit, the discretiza-
tion lines intersecting the conductor section are equal to
the total number (2 X k) of the potential lines. As a result,
the matrix elements of the resulting Green’s function in
the space-spectral domain are once again coupled to each
other through the reverse transformation back into the
original domain:

(Z(a) =n<a)> < ix(a)> <éx(a)>
_ _ i = 23)
Z@) Zy @)/ \jilo) 2.0
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This equation is now subject to the SDA technique from
which the eigensolution can be obtained directly in the
spectral domain. To do so, the Galerkin’s technique is
used together with an appropriate choice of basis func-
tions defined on the conductor surface for each slicing line
in the z direction. This leads to a characteristic matrix
equation system which must be solved for the zeros of its
determinant. Whereby the determinant is a function of the
reflection coefficient r:

7 [gJ ~ 0.

In contrast to the 3-D SDA, only one-dimensional basis
functions are needed here. In order to achieve a fast al-
gorithm, the following trigonometric functions combined
with the edge condition are used:

&* sin {P_’f(i“_s)}
w

@4

mh
ip@) = - ,
\/1-{—(x—s)—1}
w
p=12,3 -+ Withmh=l,2’- Lk
B cos {____qu(x — S)}
w
() = ’
) 2
l-j=x—-9-1
W i
g=0,1,2,--- with m*=1,2, - -+, k
(25)

where a;,"h and b} denote the unknown modal current coef-
ficients, which must be determined for each line. Note
that e and h refer to electric and magnetic potential lines,
respectively. Subscripts p and g denote the number of the
basis functions. For irregularly shaped discontinuities, the
geometric parameters w and s become a function of the z-
coordinate and therefore are different for each line. Im
general, this does not complicate the analysis of planar
structures at all, as long as the circuit contour can be de-
scribed mathematically or by a set of coordinates. It
should be emphasized that, due to the flexibility in han-

-dling arbitrary circuit topology, the SSDA is very well

suited for contour-driven CAD software. In addition, sin-
gularities of the circuit in the x direction are automatically
considered in the formulation of the basis functions.
Once the voltage reflection coeflicient r (sy,) is known,
an arbitrary constant for the first element of the x-oriented
current coefficients can be assumed. Applying a singular
value decomposition technique to (24) yields all the cur-
rent coefficients for the chosen basis functions assigned to
each discrete line. Therefore, the total surface current
across the line can be obtained by a simple integration. It
is worthwhile pointing out that infinite summation of the
spectral terms, when constructing the characteristic equa-
tion F in (24) must be truncated at a suitable value N for



1480

practical calculations. N can be different for each line.
However, for simplicity, only equal numbers for each line
will be considered in the following calculations.

RESULTS AND DISCUSSION

First of all, the influence of the voltage reflection coef-
ficient r(s;;) on the error function is examined by assum-
ing that the 3 dB criterion defined in (15) and (16) is sat-
isfied for two cases: /N, = 0.2 and /N, = 0.05. It is
important to note that such a function is related only to
the discretization error and cannot be regarded as the
overall accuracy criterion although both errors are related
to each other to some extent. Fig. 2 and.Fig. 3 display
the magnitude of the error function versus the phase of s,
in degrees at Port 1 which varies from 0° to 360° with
different voltage reflection coefficients. It is obvious that
choosing a fine discretization significantly reduces the er-
ror term. On the other hand, maximum and minimum er-
ror may occur at different locations of the phase. In case
of h /N, = 0.05, for example, maximum error points are
quasi-symmetrically located at two sides of one minimum
location around sy, = 175° while in case of h/\, =
0.2 two minimum locations exist which are close to 2 s,
= 160° and 2zs;; = 320°, respectively. Another obser-
vation is that the error for small reflections appears to be
smaller than that of larger reflections, which can be ex-
plained by the fact that a higher reflection yields a distinct
variation of the standing-wave pattern and consequently
causes higher discretization error of the differential oper-
ators. This is in particular true if the reference plane of
discretization coincides with the position on the line where
a strong variation of the waveform occurs. In other words,
choosing different lengths of the feed line and/or terminal
line results in different phase terms of the voltage reflec-
tion coeflicient at the reference plane with no change in
the magnitude of r. '

To demonstrate the SSDA, three simple examples of
through-lines with matched, open- and short-circuit con-
ditions at the boundary of Port 2 are given. Since only
propagation of the fundamental mode is considered along
the uniform transmission lines, one basis function of each
J,. and J, component is needed to provide enough accu-
racy. Fig. 4 shows a convergence test of £ s;; for d short-
circuited through microstrip line as a function of the trun-
cated spectral term along the x-direction with different
discretization size. It can be seen that the convergence is
quite beyond N = 75 for three discretization sizes.

Fig. 5 displays the surface current distribution of J, and
J, components along the longitudinal direction of the line
under matched condition. There is a negligible standing-
wave (| r| = 0.022) on the line which should not be the
case if the matching were perfect. This phenomenon can

" "be explained by the fact that the matched condition im-
plemented in this theory is a necessary condition which
does not provide a complete match due to the error of
discretization and the truncated terms of the infinite spec-
trum. This has also been reported in [24]. Increasing the
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Fig. 2. Magnitude of the error function at Port 1 as a function of the angle
of r with different magnitudes of r in case of fine discretization.
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Fig. 4. Relative convergence behavior of the voltage reflection coefficient
< r versus the truncated spectral term N with different discretization size
for a shorted through microstrip line. [r| = 1 is always obtained. The
parameters used in the calculation: 1 = 9 mm, w = 1 mm, 4 = 0.25 mm,
a=10mm, s = 4.5 mm, f = 12 GHz, ¢, = 10, €.z = 8.0474 and substrate
thickness is 0.25 mm.

spectral term N can improve the mismatch (i.e., |s|
= 0.059 for N = 100 to 0.022 for N = 150). In addition,
the magnitude of J, tends to vanish because of its anti-
symmetry of the current distribution on the conductor.
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Fig. 6. Standing-wave profiles of the J, component along the through mi-
crostrip line as described in Fig. 4 with the short and open-circuit ter-
mination.

Fig. 6 illustrates the complete standing-wave of the J;
component along the line with the open and short at Port
2 (|7} at z = 0 is 1.0 for both open and short circuits),
which agrees well with the physical perception. As ex-
pected, the maximum and minimum points for the open
and short are alternatively located, and the open and short
points of the line are clearly indicated by the magnitude
of the standing-waves. ’

Fig. 7 shows a comparison of the parameter si; ob-
tained by this method and by others (i.e. [21], [25]) for a
microstrip step discontinuity. A good agreeent can be ob-
served over the frequency range up to 25 GHz, while a
small discrepancy of numerical results appears beyond that
frequency range. This may be due to different dimensions
of the shielding box. =

" Transmission characteristics of two closely spaced mi-
crostrip step discontinuities are shown in Fig. 8. It is ev-
ident that there is a strong interaction between both steps

since the separation of bqth steps is less than half the
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Fig. 7. Frequency-dependent reflection characteristics (sy,) of a microstrip
step discontinuity. wi = 1.00 mm, w; = 0.25 mm, ¢, = 10.0, a'= 10 mm
and thickness of the dielectric substrate ¢ = 0.25 mm.

0.6

100

¢y, (in dégree)

-100

f (GHz)

: . (b :

Fig. 8. S-parameters for a cascaded step discontinuity separated by a
transmission line of length 1. w, = 0.4 mm, wy = 0.2 mm, w, = 0.8 mm,
¢, = 3.8,a=5mmand ¢ = 0.25 mm. (a) Magnitude of s1,. (b) Phase of

Sype

.

guided wavelength. Interestingly, a tighter coupling of
both steps leads to a lower reflection coefficient over the
frequency. The phase of the step discontinuity is shown
in Fig. 8(b). These results suggest that a strong inter-
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Fig. 9. Frequency response of a linear taper with a variable angle 6. Di-
mension of the structure is the same as that used in Fig. 7.

action between two single step discontinuities is not lim-

ited to only cases of short interconnecting stubs.

The frequency-dependent reflection characteristic of a
linear microstrip taper is presented in Fig. 9 to demon-
strate the flexibility and efficiency of this full-wave ap-
proach when arbitrary discontinuity contours are consid-
ered. The limiting case of the taper is § = 90 degree in
which the taper is reduced to an abrupt step discontinuity
analyzed in Fig. 7. An oscillating behavior of s, appears
in cases of long tapers (6 = 30 degree and § = 15 degree)
which indicates some kind of resonance effect. For the 6
= 15 degree taper this resonance effect occurs at higher
frequencies than for the one with § = 30 degree. Similar
characteristics of linear microstrip tapers have been ob-
tained by the planar circuit approach in [26].

CONCLUSION

A new approach using the Space-Spectral Domain Ap-
proach (SSDA) has been presented to calculate scattering
parameters and field/current distributions for three-di-
mensional discontinuity problems in MIC/MMIC cir-
cuits. The theory presented in this paper demonstrates how
to implement self-consistent hybrid boundary conditions.
Analytical error functions are introduced for the first time

to cstimate the error magnitude due to the discretization -

scheme used in this method. The convergence behavior
of the method is illustrated as a function of the truncated
‘spectral terms and with different discretization sizes. Sur-
face current standing-wave profiles along microstrip
through-lines with matched, open- and short-circuit con-
ditions are calculated. A comparison with results from
other methods validates this new approach. Some practi-
cal discontinuities including the linear microstrip taper
have been analyzed, to demonstrate the efficiency and
flexibility of this technique in treating arbitrary planar cir-
cuit contours frequently found in M(H)MIC's.
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